Question:

The expression $ \frac{2 \tan A}{1 - \cot A} + \frac{2 \cot A}{1 - \tan A} $ \text{ can be written as}

Show Hint

To simplify complex trigonometric expressions, convert cotangent and tangent into their sine and cosine equivalents. Use known trigonometric identities to further simplify.
Updated On: Apr 17, 2025
  • \( \sin 2A + \cos 2A \)
  • \( 2 \sec A \csc A + 2 \)
  • \( \tan 2A + \cot 2A \)
  • \( \sec 2A + \csc 2A \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The given expression is: \[ \frac{2 \tan A}{1 - \cot A} + \frac{2 \cot A}{1 - \tan A} \] We know that: \[ \cot A = \frac{1}{\tan A} \] Now, simplify the two terms separately: \[ \frac{2 \tan A}{1 - \cot A} = \frac{2 \tan A}{1 - \frac{1}{\tan A}} = \frac{2 \tan A}{\frac{\tan A - 1}{\tan A}} = 2 \sec A \csc A \] Similarly, for the second term: \[ \frac{2 \cot A}{1 - \tan A} = 2 \sec A \csc A \] Now, adding both terms: \[ 2 \sec A \csc A + 2 \] Thus, the simplified expression is: \[ 2 \sec A \csc A + 2 \]
Was this answer helpful?
0
0