The expression $ \frac{2 \tan A}{1 - \cot A} + \frac{2 \cot A}{1 - \tan A} $ can be written as
To simplify the given expression \( \frac{2 \tan A}{1 - \cot A} + \frac{2 \cot A}{1 - \tan A} \), we start with trigonometric identities: \(\cot A = \frac{1}{\tan A}\).
Using this, the expression becomes:
\(\frac{2 \tan A}{1 - \frac{1}{\tan A}} + \frac{2 \frac{1}{\tan A}}{1 - \tan A}\).
Now, simplify each term separately. For the first term, we have:
\(\frac{2 \tan A}{1 - \frac{1}{\tan A}} = \frac{2 \tan A}{\frac{\tan A - 1}{\tan A}} = 2 \tan^2 A \cdot \frac{\tan A}{\tan A - 1} = \frac{2 \tan^2 A}{\tan A - 1}\).
And for the second term:
\(\frac{2 \frac{1}{\tan A}}{1 - \tan A} = \frac{2}{\tan A(1 - \tan A)} = \frac{2}{\tan A - \tan^2 A}\).
Combine the two simplified fractions:
\(\frac{2 \tan^2 A}{\tan A - 1} + \frac{2}{\tan A - \tan^2 A}\).
The denominators are different, but observe that \(\tan A - \tan^2 A = \tan A (1 - \tan A)\). Thus, find a common denominator:
\(\tan A (\tan A - 1)\).
Express each fraction with this common denominator:
\(\frac{2 \tan^3 A}{\tan A(\tan A - 1)} + \frac{2 \cdot \tan A}{\tan A (1 - \tan A)}\).
Simplify and combine:
\(\frac{2 \tan^3 A - 2 \tan A}{\tan A (1 - \tan A)} = \frac{2 \tan A (\tan^2 A - 1)}{\tan A (1 - \tan A)}\).
Now, simplify: \(\tan^2 A - 1 = \sec^2 A - 2\) using identity \(\sec^2 A = \tan^2 A + 1\).
Thus, substitute back:
\(\frac{2 (\sec^2 A - 2)}{1 - \tan A} = 2 \sec^2 A - 2\).
Re-write in terms of sine and cosine:
\(2 (\frac{1}{\cos^2 A} + \frac{1}{\sin^2 A}) = 2 \sec A \csc A + 2\).
Thus, the expression simplifies to \[ 2 \sec A \csc A + 2 \]
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: