Step 1: Identify the general form of hyperbola.
Given hyperbola:
\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
\]
Compare with:
\[
x^2 - \frac{y^2}{3} = 1 \Rightarrow a^2 = 1, b^2 = 3
\]
Step 2: Use the equation of tangent at \( (x_1, y_1) \).
Standard tangent to hyperbola:
\[
\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1
\]
Substitute values \( (x_1, y_1) = (2, -3) \), \( a^2 = 1, b^2 = 3 \):
\[
\frac{x \cdot 2}{1} - \frac{y \cdot (-3)}{3} = 1 \Rightarrow 2x + y = 1
\]