Let normals to the given planes be:
\[
\vec{n}_1 = \langle 1, -1, 2 \rangle, \quad \vec{n}_2 = \langle 2, -2, 1 \rangle
\]
Since required plane is perpendicular to both planes, its normal vector is the cross product of \( \vec{n}_1 \times \vec{n}_2 \):
\[
\vec{n} = \vec{n}_1 \times \vec{n}_2 =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
1 & -1 & 2
2 & -2 & 1
\end{vmatrix} =
(-1)(1) - (2)(-2) \hat{i} - (1)(1) - (2)(2) \hat{j} + (1)(-2) - (-1)(2) \hat{k}
= \langle 0, -5, 0 \rangle
\Rightarrow \text{Normal: } \hat{i} + \hat{j}
\]
Equation of plane through \( (1, 2, 2) \) and normal \( (1, 1, 0) \):
\[
(x - 1) + (y - 2) = 0 \Rightarrow x + y - 3 = 0
\]