Step 1: Rearrange the differential equation into a standard form.
The given differential equation is \( ydx = (x + y^3 \cos y)dy \). We can rewrite this as: \[ y\frac{dx}{dy} = x + y^3 \cos y \] To put it in the standard form of a linear differential equation, \( \frac{dx}{dy} + P(y)x = Q(y) \): \[ y\frac{dx}{dy} - x = y^3 \cos y \] Divide by \(y\): \[ \frac{dx}{dy} - \frac{1}{y}x = y^2 \cos y \] This is a linear differential equation where \( P(y) = -\frac{1}{y} \) and \( Q(y) = y^2 \cos y \).
Step 2: Find the integrating factor (IF).
The integrating factor is given by \( IF = e^{\int P(y) dy} \). \[ IF = e^{\int -\frac{1}{y} dy} = e^{-\ln|y|} = e^{\ln|y|^{-1}} = e^{\ln\left(\frac{1}{|y|}\right)} = \frac{1}{y} \] (We assume \( y>0 \) since the point \( (0, \pi) \) implies \( y>0 \)).
Step 3: Solve the differential equation using the integrating factor.
Multiply the standard form of the differential equation by the integrating factor: \[ \frac{1}{y}\left(\frac{dx}{dy} - \frac{1}{y}x\right) = \frac{1}{y}\left(y^2 \cos y\right) \] \[ \frac{1}{y}\frac{dx}{dy} - \frac{1}{y^2}x = y \cos y \] The left-hand side is the derivative of \( \left(x \cdot \frac{1}{y}\right) \) with respect to \(y\): \[ \frac{d}{dy}\left(\frac{x}{y}\right) = y \cos y \] Integrate both sides with respect to \(y\): \[ \int \frac{d}{dy}\left(\frac{x}{y}\right) dy = \int y \cos y dy \] \[ \frac{x}{y} = \int y \cos y dy \] To evaluate \( \int y \cos y dy \), we use integration by parts, \( \int u dv = uv - \int v du \).
Let \( u = y \) and \( dv = \cos y dy \).
Then \( du = dy \) and \( v = \sin y \).
\[ \int y \cos y dy = y \sin y - \int \sin y dy \] \[ = y \sin y - (-\cos y) + C_1 \] \[ = y \sin y + \cos y + C_1 \] So, the solution is: \[ \frac{x}{y} = y \sin y + \cos y + C_1 \] Multiply by \(y\) to find \(x\): \[ x = y^2 \sin y + y \cos y + C_1y \]
Step 4: Use the given point to find the constant of integration C.
The curve passes through the point \( (0, \pi) \). Substitute \( x=0 \) and \( y=\pi \) into the equation: \[ 0 = (\pi)^2 \sin(\pi) + \pi \cos(\pi) + C_1\pi \] We know that \( \sin(\pi) = 0 \) and \( \cos(\pi) = -1 \). \[ 0 = \pi^2 (0) + \pi (-1) + C_1\pi \] \[ 0 = 0 - \pi + C_1\pi \] \[ 0 = \pi(C_1 - 1) \] Since \( \pi \neq 0 \), we must have \( C_1 - 1 = 0 \), which means \( C_1 = 1 \).
Step 5: Write the final equation of the curve and match with options.
Substitute \( C_1 = 1 \) back into the equation for \(x\): \[ x = y^2 \sin y + y \cos y + y \] Now, let's compare this with the given options. Option (2) is \( x = y^2 \sin y + 2y\cos^2 \frac{y}{2} \).
We need to check if our solution can be transformed into option (2). Recall the half-angle identity for cosine: \( \cos y = 2\cos^2 \frac{y}{2} - 1 \).
Substitute this into our solution: \[ x = y^2 \sin y + y(2\cos^2 \frac{y}{2} - 1) + y \] \[ x = y^2 \sin y + 2y\cos^2 \frac{y}{2} - y + y \] \[ x = y^2 \sin y + 2y\cos^2 \frac{y}{2} \] This matches option (2).