Step 1: Recognize the Standard Projectile Trajectory Equation
The path of a projectile launched at an angle \( \theta \) with initial speed \( u \) is described by:
\[
y = x \tan \theta - \frac{g}{2 u^2 \cos^2 \theta} x^2.
\]
Comparing this to the given equation:
\[
y = 3x - 0.8 x^2,
\]
we can match terms:
\[
\tan \theta = 3, \quad \text{and} \quad \frac{g}{2 u^2 \cos^2 \theta} = 0.8.
\]
Step 2: Calculate Initial Velocity \( u \)
First, express \( \sin \theta \) using \( \tan \theta \):
\[
\sin \theta = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \frac{3}{\sqrt{1 + 9}} = \frac{3}{\sqrt{10}}.
\]
Next, rearrange the relation involving \( u \):
\[
0.8 = \frac{g}{2 u^2 \cos^2 \theta} \implies u^2 \cos^2 \theta = \frac{g}{2 \times 0.8} = \frac{10}{1.6} = 6.25.
\]
Since \( \cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{10} \), we find:
\[
u^2 = \frac{6.25}{0.1} = 62.5.
\]
Therefore, the initial speed is:
\[
u = \sqrt{62.5} \approx 7.9 \text{ m/s}.
\]
Step 3: Find the Time of Flight \( T \)
Using the formula for total time of flight:
\[
T = \frac{2 u \sin \theta}{g} = \frac{2 \times 7.9 \times \frac{3}{\sqrt{10}}}{10}.
\]
Approximating \( \frac{3}{\sqrt{10}} \approx 0.95 \), we get:
\[
T \approx \frac{2 \times 7.9 \times 0.95}{10} = \frac{15.01}{10} = 1.5 \text{ s}.
\]
Final Answer:
Thus, the time of flight is:
\[
\boxed{1.5 \text{ seconds}}.
\]