Step 1: Find the midpoint of the given line segment
Midpoint formula: \( M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)
Given points: \( (10,0) \) and \( (0,-4) \)
\( M = \left( \frac{10 + 0}{2}, \frac{0 + (-4)}{2} \right) = \left( \frac{10}{2}, \frac{-4}{2} \right) = (5, -2) \)
Step 2: Find the slope of the given line segment
Slope formula: \( m = \frac{y_2 - y_1}{x_2 - x_1} \)
\( m = \frac{-4 - 0}{0 - 10} = \frac{-4}{-10} = \frac{2}{5} \)
Step 3: Find the slope of the perpendicular bisector
The perpendicular slope is the negative reciprocal of \( \frac{2}{5} \):
\( m' = -\frac{5}{2} \)
Step 4: Find the equation of the perpendicular bisector
Using point-slope form: \( y - y_1 = m(x - x_1) \)
\( y - (-2) = -\frac{5}{2} (x - 5) \)
\( y + 2 = -\frac{5}{2}x + \frac{25}{2} \)
Multiplying everything by 2 to eliminate fractions:
\( 2y + 4 = -5x + 25 \)
\( 5x + 2y = 21 \)
Thus, the correct answer is:
\( 5x + 2y = 21 \)
The length of the normal drawn at \( t = \frac{\pi}{4} \) on the curve \( x = 2(\cos 2t + t \sin 2t) \), \( y = 4(\sin 2t + t \cos 2t) \) is: