Given the equation \( m\frac{d^{2}x}{dt^{2}}+b\frac{dx}{dt}+kx=0 \), we need to find the dimensional formula of \( \frac{b}{\sqrt{km}} \).
First, let's find the dimensions of each term in the equation.
Since all terms must have the same dimensions, we have:
Now, let's find the dimensions of \( \frac{b}{\sqrt{km}} \):
\[ \left[ \frac{b}{\sqrt{km}} \right] = \frac{[MLT^{-1}]}{\sqrt{[MT^{-2}][M]}} = \frac{[MLT^{-1}]}{\sqrt{[M^2T^{-2}]}} = \frac{[MLT^{-1}]}{[MT^{-1}]} = [M^{1-1}L^{1-0}T^{-1-(-1)}] = [M^{0}L^{0}T^{0}] \]
Final Answer: (1) \([M^{0}L^{0}T^{0}]\).
Match the following: