Step 1: Known Information.
Enthalpy of formation of \( \text{CO}_2(g) \): \( \Delta H_f^{\circ}(\text{CO}_2) = -393 \, \text{kJ/mol} \)
Enthalpy of formation of \( \text{H}_2\text{O}(l) \): \( \Delta H_f^{\circ}(\text{H}_2\text{O}) = -286 \, \text{kJ/mol} \)
Enthalpy of formation of \( \text{C}_6\text{H}_{12}\text{O}_6(s) \): \( \Delta H_f^{\circ}(\text{C}_6\text{H}_{12}\text{O}_6) = -1170 \, \text{kJ/mol} \)
Mass of \( \text{C}_6\text{H}_{12}\text{O}_6 \): \( 18 \, \text{g} \)
Step 2: Balanced Combustion Equation.
The balanced combustion equation for glucose (\( \text{C}_6\text{H}_{12}\text{O}_6 \)) is:
$$ \text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 6\text{H}_2\text{O}(l) $$ Step 3: Calculate the Enthalpy Change for the Reaction.
The standard enthalpy change of reaction (\( \Delta H_{\text{rxn}}^{\circ} \)) is given by:
$$ \Delta H_{\text{rxn}}^{\circ} = \sum \Delta H_f^{\circ}(\text{products}) - \sum \Delta H_f^{\circ}(\text{reactants}) $$ Reactants:
\( \text{C}_6\text{H}_{12}\text{O}_6(s) \): \( \Delta H_f^{\circ} = -1170 \, \text{kJ/mol} \)
\( \text{O}_2(g) \): \( \Delta H_f^{\circ} = 0 \, \text{kJ/mol} \) (standard state reference)
Products:
\( \text{CO}_2(g) \): \( \Delta H_f^{\circ} = -393 \, \text{kJ/mol} \)
\( \text{H}_2\text{O}(l) \): \( \Delta H_f^{\circ} = -286 \, \text{kJ/mol} \)
Substitute into the equation: $$ \Delta H_{\text{rxn}}^{\circ} = [6 \cdot (-393) + 6 \cdot (-286)] - [-1170 + 0] $$ Simplify: $$ \Delta H_{\text{rxn}}^{\circ} = [-2358 - 1716] - [-1170] $$ $$ \Delta H_{\text{rxn}}^{\circ} = -4074 + 1170 = -2904 \, \text{kJ/mol} $$ Step 4: Calculate Heat Liberated for 18 g of Glucose.
The molar mass of glucose (\( \text{C}_6\text{H}_{12}\text{O}_6 \)) is: $$ 6 \times 12 + 12 \times 1 + 6 \times 16 = 72 + 12 + 96 = 180 \, \text{g/mol} $$ Mass of glucose given: \( 18 \, \text{g} \)
Number of moles of glucose:
$$ \text{Moles} = \frac{18 \, \text{g}}{180 \, \text{g/mol}} = 0.1 \, \text{mol} $$ Heat liberated for \( 0.1 \, \text{mol} \):
$$ \text{Heat liberated} = 0.1 \times 2904 \, \text{kJ} = 290.4 \, \text{kJ} $$ Rounding to the nearest whole number: $$ \text{Heat liberated} = 290 \, \text{kJ} $$ Final Answer: \( \boxed{290 \, \text{kJ}} \)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)