Question:

The enthalpies of formation of \( \text{CO}_2(g) \), \( \text{H}_2\text{O}(l) \), and \( \text{C}_6\text{H}_{12}\text{O}_6(s) \) are \( -393 \), \( -286 \), and \( -1170 \, \text{kJ/mol} \), respectively. The quantity of heat liberated when \( 18 \, \text{g} \) of \( \text{C}_6\text{H}_{12}\text{O}_6(s) \) is burnt completely in oxygen is.}

Show Hint

To calculate the heat of combustion, use the standard enthalpies of formation and the stoichiometry of the balanced equation. Remember to account for the number of moles involved.
Updated On: Jun 5, 2025
  • $ 520 \, \text{kJ} $
  • $ 145 \, \text{kJ} $
  • $ 290 \, \text{kJ} $
  • $ 420 \, \text{kJ} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Known Information. 
Enthalpy of formation of \( \text{CO}_2(g) \): \( \Delta H_f^{\circ}(\text{CO}_2) = -393 \, \text{kJ/mol} \)
Enthalpy of formation of \( \text{H}_2\text{O}(l) \): \( \Delta H_f^{\circ}(\text{H}_2\text{O}) = -286 \, \text{kJ/mol} \)
Enthalpy of formation of \( \text{C}_6\text{H}_{12}\text{O}_6(s) \): \( \Delta H_f^{\circ}(\text{C}_6\text{H}_{12}\text{O}_6) = -1170 \, \text{kJ/mol} \)
Mass of \( \text{C}_6\text{H}_{12}\text{O}_6 \): \( 18 \, \text{g} \) 
Step 2: Balanced Combustion Equation. 
The balanced combustion equation for glucose (\( \text{C}_6\text{H}_{12}\text{O}_6 \)) is:
$$ \text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 6\text{H}_2\text{O}(l) $$ Step 3: Calculate the Enthalpy Change for the Reaction. 
The standard enthalpy change of reaction (\( \Delta H_{\text{rxn}}^{\circ} \)) is given by:
$$ \Delta H_{\text{rxn}}^{\circ} = \sum \Delta H_f^{\circ}(\text{products}) - \sum \Delta H_f^{\circ}(\text{reactants}) $$ Reactants:
\( \text{C}_6\text{H}_{12}\text{O}_6(s) \): \( \Delta H_f^{\circ} = -1170 \, \text{kJ/mol} \)
\( \text{O}_2(g) \): \( \Delta H_f^{\circ} = 0 \, \text{kJ/mol} \) (standard state reference)
Products:
\( \text{CO}_2(g) \): \( \Delta H_f^{\circ} = -393 \, \text{kJ/mol} \)
\( \text{H}_2\text{O}(l) \): \( \Delta H_f^{\circ} = -286 \, \text{kJ/mol} \)
Substitute into the equation: $$ \Delta H_{\text{rxn}}^{\circ} = [6 \cdot (-393) + 6 \cdot (-286)] - [-1170 + 0] $$ Simplify: $$ \Delta H_{\text{rxn}}^{\circ} = [-2358 - 1716] - [-1170] $$ $$ \Delta H_{\text{rxn}}^{\circ} = -4074 + 1170 = -2904 \, \text{kJ/mol} $$ Step 4: Calculate Heat Liberated for 18 g of Glucose. 
The molar mass of glucose (\( \text{C}_6\text{H}_{12}\text{O}_6 \)) is: $$ 6 \times 12 + 12 \times 1 + 6 \times 16 = 72 + 12 + 96 = 180 \, \text{g/mol} $$ Mass of glucose given: \( 18 \, \text{g} \)
Number of moles of glucose:
$$ \text{Moles} = \frac{18 \, \text{g}}{180 \, \text{g/mol}} = 0.1 \, \text{mol} $$ Heat liberated for \( 0.1 \, \text{mol} \):
$$ \text{Heat liberated} = 0.1 \times 2904 \, \text{kJ} = 290.4 \, \text{kJ} $$ Rounding to the nearest whole number: $$ \text{Heat liberated} = 290 \, \text{kJ} $$ Final Answer: \( \boxed{290 \, \text{kJ}} \)

Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification