Step 1: Understand the energy level formula for hydrogen-like species
For a hydrogen-like ion, the energy of the nth orbit is given by:
\( E_n = - \frac{13.6 \times Z^2}{n^2} \) eV
Or in joules:
\( E_n = - \frac{2.18 \times 10^{-18} \times Z^2}{n^2} \) J
Where:
- \( Z \) is the atomic number
- \( n \) is the principal quantum number (orbit number)
Step 2: Use the energy of the second orbit of hydrogen
Given: Energy of 2nd orbit of hydrogen atom = \( -5.45 \times 10^{-19} \) J
We can generalize this using the energy level formula:
Hydrogen has \( Z = 1 \), so:
\( E_2(H) = - \frac{2.18 \times 10^{-18} \times 1^2}{2^2} = - \frac{2.18 \times 10^{-18}}{4} \approx -5.45 \times 10^{-19} \) J
This confirms the formula's accuracy.
Step 3: Calculate the energy for the 1st orbit of \( Li^{2+} \)
For \( Li^{2+} \), \( Z = 3 \) and \( n = 1 \)
Use the formula:
\( E_1(Li^{2+}) = - \frac{2.18 \times 10^{-18} \times 3^2}{1^2} \)
\( E_1 = -2.18 \times 10^{-18} \times 9 = -1.962 \times 10^{-17} \) J
Step 4: Final Answer
The energy of the first orbit of \( Li^{2+} \) is:
\( -1.962 \times 10^{-17} \) J