In a Daniel cell,
At cathode: Cu²⁺(aq) + 2e⁻ → Cu(s)
At anode: Zn(s) → Zn²⁺(aq) + 2e⁻
Ecell = E°cell - \(\frac{0.0591}{n}\) log \(\frac{anode}{cathode}\)
Zn| ZnSO4 (0.01 M)
CuSO4 | Cu (1.0 M)
In the equation, anode = Zn2+ . Cathode = Cu2+
Substituting the value:
E1 = E° - \(\frac{0.0591}{n}\)log\(\frac{0.01}{1.0}\)
= E° - \(\frac{0.0591}{2} log 10^{-2}\)
E° + 0.0591 V
Now, for E2 : Zn (1.0 M) Cu (0.01)
E2 = E° - \(\frac{0.0591}{2} \)\(log \frac{1}{0.01}\)
E°- \(\frac{0.0591}{2} log^2\)
E° - 0.0591 V
E1 > E2
This equation relates the equilibrium cell potential (also called the Nernst potential) to its concentration gradient across a membrane. If there is a concentration gradient for the ion across the membrane, an electric potential will form, and if selective ion channels exist the ion can cross the membrane.
