The work done in moving a charge \( q \) in an electric field is given by: \[ W = \int_{x_1}^{x_2} q E \, dx \] For a unit charge (\( q = 1 \)), this simplifies to: \[ W = \int_{x_1}^{x_2} E \, dx \] (i) Work Done from \( (5 m, 0) \) to \( (10 m, 0) \)
Since the electric field is along the \( x \)-axis, we compute: \[ W = \int_{5}^{10} (10x + 4) \, dx \] \[ W = \left[ 10 \frac{x^2}{2} + 4x \right]_{5}^{10} \] \[ W = \left( 5 \times 100 + 4 \times 10 \right) - \left( 5 \times 25 + 4 \times 5 \right) \] \[ W = (500 + 40) - (125 + 20) \] \[ W = 540 - 145 = 395 \text{ J} \] Thus, the work done is 395 J.
(ii) Work Done from \( (5 m, 0) \) to \( (5 m, 10 m) \) - Since the electric field is only along the \( x \)-direction (\( E_x \)), there is no electric field component in the \( y \)-direction.
- Work is only done when moving in the direction of the field. Since displacement in the \( x \)-direction is zero, the work done is: \[ W = 0 \] Thus, the work done is 0 J.



Student to attempt either option-(A) or (B):
(A) Write the features a molecule should have to act as a genetic material. In the light of the above features, evaluate and justify the suitability of the molecule that is preferred as an ideal genetic material.
OR
(B) Differentiate between the following: