The work done in moving a charge \( q \) in an electric field is given by: \[ W = \int_{x_1}^{x_2} q E \, dx \] For a unit charge (\( q = 1 \)), this simplifies to: \[ W = \int_{x_1}^{x_2} E \, dx \] (i) Work Done from \( (5 m, 0) \) to \( (10 m, 0) \)
Since the electric field is along the \( x \)-axis, we compute: \[ W = \int_{5}^{10} (10x + 4) \, dx \] \[ W = \left[ 10 \frac{x^2}{2} + 4x \right]_{5}^{10} \] \[ W = \left( 5 \times 100 + 4 \times 10 \right) - \left( 5 \times 25 + 4 \times 5 \right) \] \[ W = (500 + 40) - (125 + 20) \] \[ W = 540 - 145 = 395 \text{ J} \] Thus, the work done is 395 J.
(ii) Work Done from \( (5 m, 0) \) to \( (5 m, 10 m) \) - Since the electric field is only along the \( x \)-direction (\( E_x \)), there is no electric field component in the \( y \)-direction.
- Work is only done when moving in the direction of the field. Since displacement in the \( x \)-direction is zero, the work done is: \[ W = 0 \] Thus, the work done is 0 J.
Use the given information to select the amino acid attached to the 3′ end of tRNA during the process of translation, if the coding strand of the structural gene being transcribed has the nucleotide sequence TAC.
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |