Given:
- Electric field at point \( P \) on the axial line: \( E_P = E = \frac{2Kp}{r^3} \)
- Electric field at point \( R \) on the equatorial line: \( E_R = \frac{Kp}{(2r)^3} \), where:
- \( K \) is the Coulomb constant,
- \( p \) is the dipole moment,
- \( r \) is the distance from the dipole center to the point of observation.
Step 1: Calculate the Electric Field at \( R \)
The electric field at point \( R \) on the equatorial line is given by:
\[ E_R = \frac{Kp}{(2r)^3}. \]
Simplify \( (2r)^3 \):
\[ E_R = \frac{Kp}{8r^3}. \]
Step 2: Compare the Electric Fields
The electric field at \( P \) on the axial line is:
\[ E_P = \frac{2Kp}{r^3}. \]
The electric field at \( R \) is related to \( E_P \) as:
\[ E_R = \frac{E_P}{x}. \]
Substitute \( E_P = \frac{2Kp}{r^3} \) and \( E_R = \frac{Kp}{8r^3} \):
\[ \frac{Kp}{8r^3} = \frac{2Kp}{xr^3}. \]
Step 3: Solve for \( x \)
Simplify the equation:
\[ \frac{Kp}{8r^3} = \frac{2Kp}{xr^3}. \]
Cancel \( Kp \) and \( r^3 \) (as they are non-zero):
\[ \frac{1}{8} = \frac{2}{x}. \]
Rearrange to solve for \( x \):
\[ x = 2 \times 8 = 16. \]
Thus, the value of \( x \) is 16.

If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
The output of the circuit is low (zero) for:

(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Which of the following circuits has the same output as that of the given circuit?
