Given:
- Electric field at point \( P \) on the axial line: \( E_P = E = \frac{2Kp}{r^3} \)
- Electric field at point \( R \) on the equatorial line: \( E_R = \frac{Kp}{(2r)^3} \), where:
- \( K \) is the Coulomb constant,
- \( p \) is the dipole moment,
- \( r \) is the distance from the dipole center to the point of observation.
Step 1: Calculate the Electric Field at \( R \)
The electric field at point \( R \) on the equatorial line is given by:
\[ E_R = \frac{Kp}{(2r)^3}. \]
Simplify \( (2r)^3 \):
\[ E_R = \frac{Kp}{8r^3}. \]
Step 2: Compare the Electric Fields
The electric field at \( P \) on the axial line is:
\[ E_P = \frac{2Kp}{r^3}. \]
The electric field at \( R \) is related to \( E_P \) as:
\[ E_R = \frac{E_P}{x}. \]
Substitute \( E_P = \frac{2Kp}{r^3} \) and \( E_R = \frac{Kp}{8r^3} \):
\[ \frac{Kp}{8r^3} = \frac{2Kp}{xr^3}. \]
Step 3: Solve for \( x \)
Simplify the equation:
\[ \frac{Kp}{8r^3} = \frac{2Kp}{xr^3}. \]
Cancel \( Kp \) and \( r^3 \) (as they are non-zero):
\[ \frac{1}{8} = \frac{2}{x}. \]
Rearrange to solve for \( x \):
\[ x = 2 \times 8 = 16. \]
Thus, the value of \( x \) is 16.
Match List-I with List-II.
Choose the correct answer from the options given below :}
There are three co-centric conducting spherical shells $A$, $B$ and $C$ of radii $a$, $b$ and $c$ respectively $(c>b>a)$ and they are charged with charges $q_1$, $q_2$ and $q_3$ respectively. The potentials of the spheres $A$, $B$ and $C$ respectively are:
Two resistors $2\,\Omega$ and $3\,\Omega$ are connected in the gaps of a bridge as shown in the figure. The null point is obtained with the contact of jockey at some point on wire $XY$. When an unknown resistor is connected in parallel with $3\,\Omega$ resistor, the null point is shifted by $22.5\,\text{cm}$ towards $Y$. The resistance of unknown resistor is ___ $\Omega$. 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.