A matrix is orthogonal if the transpose of the matrix is equal to its inverse, i.e., \( A^T A = I \), where \( A \) is the matrix and \( I \) is the identity matrix.
Let’s check each option to determine which matrix is orthogonal:
- Option (A):
\[
A = \begin{bmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]
The dot product of the rows of \( A \) is:
\[
\left( \frac{1}{2} \times -\frac{\sqrt{3}}{2} \right) + \left( -\frac{\sqrt{3}}{2} \times \frac{1}{2} \right) = -\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = -\frac{\sqrt{3}}{2} \neq 0
\]
Since the rows are not orthogonal, Option A is not orthogonal.
- Option (B):
\[
B = \begin{bmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]
The dot product of the rows of \( B \) is:
\[
\left( \frac{1}{2} \times \frac{\sqrt{3}}{2} \right) + \left( -\frac{\sqrt{3}}{2} \times \frac{1}{2} \right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0
\]
The rows are orthogonal. Also, the dot product of each row with itself is 1, so this matrix is orthogonal. Therefore, Option B is the correct answer.
- Option (C):
\[
C = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]
This matrix fails the orthogonality condition as the rows are not orthogonal. Hence, Option C is not orthogonal.
- Option (D):
\[
D = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}}
\end{bmatrix}
\]
This matrix also fails the orthogonality condition as the rows are not orthogonal. Hence, Option D is not orthogonal.
Thus, the correct option is Option B.