The eigenvalue(s) of the matrix

The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is:
Let \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & k & 0 \\ 3 & 0 & -1 \end{pmatrix}. \] If the eigenvalues of \( A \) are -2, 1, and 2, then the value of \( k \) is _.
(Answer in integer)
One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown in the figure. Total change in entropy (in J K\(^{-1}\)) during this process is ............... 
The number of chiral carbon centers in the following molecule is ............... 
A tube fitted with a semipermeable membrane is dipped into 0.001 M NaCl solution at 300 K as shown in the figure. Assume density of the solvent and solution are the same. At equilibrium, the height of the liquid column \( h \) (in cm) is ......... 
An electron at rest is accelerated through 10 kV potential. The de Broglie wavelength (in A) of the electron is .............