Step 1: Define the characteristic equation. The characteristic equation is derived from the determinant of \( A - \lambda I \), leading to \( \lambda^2 - 8\lambda + 7 = 0 \).
Step 2: Calculate the determinant and simplify. The determinant simplifies to \( \lambda^2 - 8\lambda + 7 \), which factors to find the eigenvalues.
Step 3: Solve for \( \lambda \). Using the quadratic formula, we find the solutions to be \( \lambda = 7 \) and \( \lambda = 1 \), confirming the eigenvalues of the matrix.
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?