100%
50%
77%
27%
11%
The efficiency (\( \eta \)) of a Carnot engine is given by: \[ \eta = 1 - \frac{T_{{cold}}}{T_{{hot}}} \] where \( T_{{cold}} = 273 \, {K} \) (ice point) and \( T_{{hot}} = 373 \, {K} \) (steam point). Calculating: \[ \eta = 1 - \frac{273}{373} \approx 0.268 = 26.8\% \] This rounds to approximately 27%.
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.