To solve for the non-dimensional parameters, we need to apply Buckingham’s Pi Theorem, which helps derive dimensionless parameters (Pi terms). Starting with the drag force equation: \[ F_D = F(D, V, \rho, \mu) \] We express the dimensions: \[ F_D = [M L T^{-2}], \quad \rho = [M L^{-3}], \quad V = [L T^{-1}], \quad \mu = [M L^{-1} T^{-1}] \] We substitute these into the drag force equation and apply the Buckingham’s Pi Theorem. After calculating, the resulting non-dimensional parameters are: \[ \pi_1 = \frac{F_D}{\rho V^2 D^2}, \quad \pi_2 = \frac{\rho V D}{\mu} \] Both expressions are dimensionless and represent the non-dimensional parameters related to the drag force on the sphere.
Hence, the correct answers are (A) and (C).
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:

The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
