To solve for the non-dimensional parameters, we need to apply Buckingham’s Pi Theorem, which helps derive dimensionless parameters (Pi terms). Starting with the drag force equation: \[ F_D = F(D, V, \rho, \mu) \] We express the dimensions: \[ F_D = [M L T^{-2}], \quad \rho = [M L^{-3}], \quad V = [L T^{-1}], \quad \mu = [M L^{-1} T^{-1}] \] We substitute these into the drag force equation and apply the Buckingham’s Pi Theorem. After calculating, the resulting non-dimensional parameters are: \[ \pi_1 = \frac{F_D}{\rho V^2 D^2}, \quad \pi_2 = \frac{\rho V D}{\mu} \] Both expressions are dimensionless and represent the non-dimensional parameters related to the drag force on the sphere.
Hence, the correct answers are (A) and (C).
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).
In levelling between two points A and B on the opposite banks of a river, the readings are taken by setting the instrument both at A and B, as shown in the table. If the RL of A is 150.000 m, the RL of B (in m) is ....... (rounded off to 3 decimal places).