If the equation of the line passing through the point $ \left( 0, -\frac{1}{2}, 0 \right) $ and perpendicular to the lines
$
\mathbf{r_1} = \lambda ( \hat{i} + a \hat{j} + b \hat{k}) \quad \text{and} \quad \mathbf{r_2} = ( \hat{i} - \hat{j} - 6 \hat{k} ) + \mu( -b \hat{i} + a \hat{j} + 5 \hat{k}),
$
is
$
\frac{x - 1}{-2} = \frac{y + 4}{d} = \frac{z - c}{-4},
$
then $ a + b + c + d $ is equal to: