Step 1: Understanding the Concept:
The domain of \(f(x) = g(x) + h(x)\) is the intersection of the domains of \(g(x)\) and \(h(x)\). For inverse sine and cosine, the argument must lie in the interval \([-1, 1]\).
Step 2: Detailed Explanation:
Let \(D_1\) be the domain of \(\sin^{-1} \left( \frac{3x^2 + x - 1}{(x - 1)^2} \right)\):
\[ -1 \le \frac{3x^2 + x - 1}{(x - 1)^2} \le 1 \]
Since \((x-1)^2>0\) for \(x \ne 1\), we have:
(i) \(3x^2 + x - 1 \le (x - 1)^2 = x^2 - 2x + 1 \implies 2x^2 + 3x - 2 \le 0\)
\[ (2x - 1)(x + 2) \le 0 \implies x \in [-2, \frac{1}{2}] \]
(ii) \(3x^2 + x - 1 \ge -(x - 1)^2 = -x^2 + 2x - 1 \implies 4x^2 - x \ge 0\)
\[ x(4x - 1) \ge 0 \implies x \in (-\infty, 0] \cup [\frac{1}{4}, \infty) \]
Intersection for \(D_1\): \([-2, 0] \cup [\frac{1}{4}, \frac{1}{2}]\).
Let \(D_2\) be the domain of \(\cos^{-1} \left( \frac{x - 1}{x + 1} \right)\):
\[ -1 \le \frac{x - 1}{x + 1} \le 1 \]
This simplifies to \(\frac{x}{x+1} \ge 0\) and \(\frac{-2}{x+1} \le 0\), which gives \(x \ge 0\) (with \(x \ne -1\)).
Intersection \(D_1 \cap D_2\):
\[ ([-2, 0] \cup [\frac{1}{4}, \frac{1}{2}]) \cap [0, \infty) = \{0\} \cup [\frac{1}{4}, \frac{1}{2}] \]
Step 3: Final Answer:
The domain is \([\frac{1}{4}, \frac{1}{2}] \cup \{0\}\).