Given:
\[ T = 3.14 = \frac{2\pi}{\omega}. \]
Solving for \( \omega \):
\[ \omega = 2 \, \text{rad/s}. \]
The displacement \( x \) is given by:
\[ x = 10 \sin\left(\omega t + \frac{\pi}{3}\right). \]
To find the velocity \( v \), differentiate \( x \) with respect to \( t \):
\[ v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right). \]
At \( t = 0 \):
\[ v = 10\omega \cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} = 10 \, \text{m/s}. \]
Answer: 10 m/s
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.