Given:
\[ T = 3.14 = \frac{2\pi}{\omega}. \]
Solving for \( \omega \):
\[ \omega = 2 \, \text{rad/s}. \]
The displacement \( x \) is given by:
\[ x = 10 \sin\left(\omega t + \frac{\pi}{3}\right). \]
To find the velocity \( v \), differentiate \( x \) with respect to \( t \):
\[ v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right). \]
At \( t = 0 \):
\[ v = 10\omega \cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} = 10 \, \text{m/s}. \]
Answer: 10 m/s
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: