Given:
\[ T = 3.14 = \frac{2\pi}{\omega}. \]
Solving for \( \omega \):
\[ \omega = 2 \, \text{rad/s}. \]
The displacement \( x \) is given by:
\[ x = 10 \sin\left(\omega t + \frac{\pi}{3}\right). \]
To find the velocity \( v \), differentiate \( x \) with respect to \( t \):
\[ v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right). \]
At \( t = 0 \):
\[ v = 10\omega \cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} = 10 \, \text{m/s}. \]
Answer: 10 m/s
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).