Given:
\[ T = 3.14 = \frac{2\pi}{\omega}. \]
Solving for \( \omega \):
\[ \omega = 2 \, \text{rad/s}. \]
The displacement \( x \) is given by:
\[ x = 10 \sin\left(\omega t + \frac{\pi}{3}\right). \]
To find the velocity \( v \), differentiate \( x \) with respect to \( t \):
\[ v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right). \]
At \( t = 0 \):
\[ v = 10\omega \cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} = 10 \, \text{m/s}. \]
Answer: 10 m/s
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.