Step 1: Compute the gradient of \( f(x, y, z) \).
\[
\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)
= \left( 8x, 16y, 18z \right)
\]
At point \( P(3, 4, 5) \),
\[
\nabla f = \langle 24, 64, 90 \rangle
\]
Step 2: Normalize the direction vector \( \vec{b} = \langle 2, -3, 4 \rangle \).
\[
|\vec{b}| = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29}
\]
\[
\hat{u} = \left\langle \frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{4}{\sqrt{29}} \right\rangle
\]
Step 3: Compute the directional derivative using dot product.
\[
D_{\vec{b}}f = \nabla f \cdot \hat{u} =
\langle 24, 64, 90 \rangle \cdot
\left\langle \frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{4}{\sqrt{29}} \right\rangle
\]
\[
= \frac{1}{\sqrt{29}} (24 \cdot 2 + 64 \cdot (-3) + 90 \cdot 4)
= \frac{1}{\sqrt{29}} (48 - 192 + 360) = \frac{216}{\sqrt{29}}
\]
\[
\sqrt{29} \approx 5.385 \quad \Rightarrow \quad \frac{216}{5.385} \approx 40.1
\]