Step 1: Understanding permeability.
Permeability in soil mechanics or hydrogeology refers to intrinsic permeability ($k$).
It describes the ability of a porous medium to transmit fluids and is a property of the medium only, independent of the fluid.
Step 2: Dimensional analysis from Darcy's law.
Darcy's law states:
\[
v = \frac{k}{\mu} \, \Delta P
\]
where:
- $v$ = superficial velocity $\left[ LT^{-1} \right]$
- $k$ = permeability $\left[ ? \right]$
- $\mu$ = dynamic viscosity $\left[ ML^{-1}T^{-1} \right]$
- $\Delta P$ = pressure gradient $\left[ ML^{-2}T^{-2} \right]$
Step 3: Isolating $k$.
From Darcy's law:
\[
k = \frac{v \, \mu}{\Delta P}
\]
Substituting dimensions:
\[
k = \frac{\left[ LT^{-1} \right] \cdot \left[ ML^{-1}T^{-1} \right]}{\left[ ML^{-2}T^{-2} \right]}
\]
Simplifying:
\[
k = \frac{[ M^1 L^0 T^{-2} ]}{[ M^1 L^{-2} T^{-2} ]}
\]
\[
k = [ L^2 ]
\]
Step 4: Conclusion.
The dimension of permeability is:
\[
\boxed{L^2}
\]