Question:

The differential equation satisfied by the system of parabolas y² = 4a(x + a) is :

Show Hint

To form a differential equation, differentiate the family of curves and eliminate the arbitrary constant ($a$).
Updated On: Jan 21, 2026
  • y (dy/dx)² + 2x (dy/dx) - y = 0
  • y (dy/dx)² - 2x (dy/dx) + y = 0
  • y (dy/dx)² - 2x (dy/dx) - y = 0
  • y (dy/dx)² - 2x (dy/dx) = 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: $y^2 = 4ax + 4a^2$. Differentiate with respect to $x$: $2y \frac{dy}{dx} = 4a \implies a = \frac{y}{2} \frac{dy}{dx}$.
Step 2: Substitute $a$ back into the original equation: $y^2 = 4 \left( \frac{y}{2} \frac{dy}{dx} \right) x + 4 \left( \frac{y}{2} \frac{dy}{dx} \right)^2$.
Step 3: $y^2 = 2xy \frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2$.
Step 4: Divide by $y$ (assuming $y \neq 0$): $y = 2x \frac{dy}{dx} + y \left( \frac{dy}{dx} \right)^2$.
Step 5: Rearrange: $y \left( \frac{dy}{dx} \right)^2 + 2x \left( \frac{dy}{dx} \right) - y = 0$.
Was this answer helpful?
0
0