Given:
- Ion: \( He^+ \) (helium ion with one electron, similar to hydrogen but with nuclear charge \( Z = 2 \))
- We need to find the difference in radii between the fourth (\( n = 4 \)) and third (\( n = 3 \)) Bohr orbits.
Step 1: Formula for radius of the \( n^{th} \) orbit in hydrogen-like ions:
\[
r_n = \frac{n^2}{Z} \times a_0
\]
where
\( r_n \) = radius of the \( n^{th} \) orbit,
\( n \) = principal quantum number,
\( Z \) = atomic number (nuclear charge),
\( a_0 = 0.529 \times 10^{-10} \, m \) is the Bohr radius.
Step 2: Calculate radius of 4th orbit (\( r_4 \)):
\[
r_4 = \frac{4^2}{2} \times a_0 = \frac{16}{2} \times 0.529 \times 10^{-10} = 8 \times 0.529 \times 10^{-10} = 4.232 \times 10^{-10} \, m
\]
Step 3: Calculate radius of 3rd orbit (\( r_3 \)):
\[
r_3 = \frac{3^2}{2} \times a_0 = \frac{9}{2} \times 0.529 \times 10^{-10} = 4.5 \times 0.529 \times 10^{-10} = 2.3805 \times 10^{-10} \, m
\]
Step 4: Find the difference \( \Delta r = r_4 - r_3 \):
\[
\Delta r = 4.232 \times 10^{-10} - 2.3805 \times 10^{-10} = 1.8515 \times 10^{-10} \, m
\]
Rounding to two significant figures:
\[
\Delta r \approx 1.85 \times 10^{-10} \, m
\]
Therefore, the difference in radii between the fourth and third Bohr orbits of \( He^+ \) is:
\[
\boxed{1.85 \times 10^{-10} \text{ m}}
\]