Given: Diagonals of a parallelogram are
\[ \vec{d_1} = 3\hat{i} + 6\hat{j} - 2\hat{k}, \quad \vec{d_2} = -\hat{i} - 2\hat{j} - 8\hat{k} \]
Step 1: Sides of the parallelogram are half the sum and half the difference of the diagonals:
\[ \vec{a} = \frac{1}{2}(\vec{d_1} + \vec{d_2}), \quad \vec{b} = \frac{1}{2}(\vec{d_1} - \vec{d_2}) \]
Step 2: Calculate \( \vec{a} \)
\[ \vec{a} = \frac{1}{2}[(3 - 1)\hat{i} + (6 - 2)\hat{j} + (-2 - 8)\hat{k}] = \frac{1}{2}(2\hat{i} + 4\hat{j} - 10\hat{k}) = \hat{i} + 2\hat{j} - 5\hat{k} \]
Step 3: Calculate \( \vec{b} \)
\[ \vec{b} = \frac{1}{2}[(3 + 1)\hat{i} + (6 + 2)\hat{j} + (-2 + 8)\hat{k}] = \frac{1}{2}(4\hat{i} + 8\hat{j} + 6\hat{k}) = 2\hat{i} + 4\hat{j} + 3\hat{k} \]
Step 4: Find magnitudes of the sides
\[ |\vec{a}| = \sqrt{1^2 + 2^2 + (-5)^2} = \sqrt{1 + 4 + 25} = \sqrt{30} \] \[ |\vec{b}| = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \]
Shorter side = \( \sqrt{29} \)
Correct option: \( \sqrt{29} \)
Let the diagonals of the parallelogram be \( \vec{d_1} = 3\hat{i} + 6\hat{j} - 2\hat{k} \) and \( \vec{d_2} = -\hat{i} - 2\hat{j} - 8\hat{k} \).
The sides of the parallelogram, \( \vec{a} \) and \( \vec{b} \), can be found using the following relationships:
\( \vec{a} = \frac{1}{2}(\vec{d_1} + \vec{d_2}) \) and \( \vec{b} = \frac{1}{2}(\vec{d_1} - \vec{d_2}) \)
Calculate \( \vec{a} \):
\( \vec{a} = \frac{1}{2}((3\hat{i} + 6\hat{j} - 2\hat{k}) + (-\hat{i} - 2\hat{j} - 8\hat{k})) = \frac{1}{2}(2\hat{i} + 4\hat{j} - 10\hat{k}) = \hat{i} + 2\hat{j} - 5\hat{k} \)
Calculate \( \vec{b} \):
\( \vec{b} = \frac{1}{2}((3\hat{i} + 6\hat{j} - 2\hat{k}) - (-\hat{i} - 2\hat{j} - 8\hat{k})) = \frac{1}{2}(4\hat{i} + 8\hat{j} + 6\hat{k}) = 2\hat{i} + 4\hat{j} + 3\hat{k} \)
Find the magnitudes of \( \vec{a} \) and \( \vec{b} \):
\( |\vec{a}| = \sqrt{(1)^2 + (2)^2 + (-5)^2} = \sqrt{1 + 4 + 25} = \sqrt{30} \)
\( |\vec{b}| = \sqrt{(2)^2 + (4)^2 + (3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \)
The length of the shorter side is \( \sqrt{29} \).