Given: Diagonals of a parallelogram are
\[ \vec{d_1} = 3\hat{i} + 6\hat{j} - 2\hat{k}, \quad \vec{d_2} = -\hat{i} - 2\hat{j} - 8\hat{k} \]
Step 1: Sides of the parallelogram are half the sum and half the difference of the diagonals:
\[ \vec{a} = \frac{1}{2}(\vec{d_1} + \vec{d_2}), \quad \vec{b} = \frac{1}{2}(\vec{d_1} - \vec{d_2}) \]
Step 2: Calculate \( \vec{a} \)
\[ \vec{a} = \frac{1}{2}[(3 - 1)\hat{i} + (6 - 2)\hat{j} + (-2 - 8)\hat{k}] = \frac{1}{2}(2\hat{i} + 4\hat{j} - 10\hat{k}) = \hat{i} + 2\hat{j} - 5\hat{k} \]
Step 3: Calculate \( \vec{b} \)
\[ \vec{b} = \frac{1}{2}[(3 + 1)\hat{i} + (6 + 2)\hat{j} + (-2 + 8)\hat{k}] = \frac{1}{2}(4\hat{i} + 8\hat{j} + 6\hat{k}) = 2\hat{i} + 4\hat{j} + 3\hat{k} \]
Step 4: Find magnitudes of the sides
\[ |\vec{a}| = \sqrt{1^2 + 2^2 + (-5)^2} = \sqrt{1 + 4 + 25} = \sqrt{30} \] \[ |\vec{b}| = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \]
Shorter side = \( \sqrt{29} \)
Correct option: \( \sqrt{29} \)
Let the diagonals of the parallelogram be \( \vec{d_1} = 3\hat{i} + 6\hat{j} - 2\hat{k} \) and \( \vec{d_2} = -\hat{i} - 2\hat{j} - 8\hat{k} \).
The sides of the parallelogram, \( \vec{a} \) and \( \vec{b} \), can be found using the following relationships:
\( \vec{a} = \frac{1}{2}(\vec{d_1} + \vec{d_2}) \) and \( \vec{b} = \frac{1}{2}(\vec{d_1} - \vec{d_2}) \)
Calculate \( \vec{a} \):
\( \vec{a} = \frac{1}{2}((3\hat{i} + 6\hat{j} - 2\hat{k}) + (-\hat{i} - 2\hat{j} - 8\hat{k})) = \frac{1}{2}(2\hat{i} + 4\hat{j} - 10\hat{k}) = \hat{i} + 2\hat{j} - 5\hat{k} \)
Calculate \( \vec{b} \):
\( \vec{b} = \frac{1}{2}((3\hat{i} + 6\hat{j} - 2\hat{k}) - (-\hat{i} - 2\hat{j} - 8\hat{k})) = \frac{1}{2}(4\hat{i} + 8\hat{j} + 6\hat{k}) = 2\hat{i} + 4\hat{j} + 3\hat{k} \)
Find the magnitudes of \( \vec{a} \) and \( \vec{b} \):
\( |\vec{a}| = \sqrt{(1)^2 + (2)^2 + (-5)^2} = \sqrt{1 + 4 + 25} = \sqrt{30} \)
\( |\vec{b}| = \sqrt{(2)^2 + (4)^2 + (3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \)
The length of the shorter side is \( \sqrt{29} \).
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: