Given below are two statements:
Statement I: Mohr's salt is composed of only three types of ions—ferrous, ammonium, and sulphate.
Statement II: If the molar conductance at infinite dilution of ferrous, ammonium, and sulphate ions are $ x_1 $, $ x_2 $, and $ x_3 $ $ \text{S cm}^2 \, \text{mol}^{-1} $, respectively, then the molar conductance for Mohr's salt solution at infinite dilution would be given by $ x_1 + x_2 + 2x_3 $.
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Conductance is an expression of the ease with which electric current flows through materials like metals and nonmetals. In equations, an uppercase letter G symbolizes conductance. The standard unit of conductance is siemens (S), formerly known as mho.
Conductance in electricity is considered the opposite of resistance (R). Resistance is essentially the amount of friction a component presents to the flow of current.