Step 1: Applying the de Broglie Wavelength Formula
The de Broglie wavelength is given by: \[ \lambda = \frac{h}{p} \] where \( p \) is the momentum of the electron. The kinetic energy \( K \) is related to momentum by: \[ p = \sqrt{2 m_e K} \] Substituting this into the de Broglie equation: \[ \lambda = \frac{h}{\sqrt{2 m_e K}} \]
Step 2: Substituting Given Values
Given that: \[ K = 2.5 \text{ eV} = 2.5 \times 1.6 \times 10^{-19} \text{ J} = 4.0 \times 10^{-19} \text{ J} \] \[ m_e = 9 \times 10^{-31} \text{ kg} \] \(h = 6.626 \times 10^{-34} \text{ Js}\) We substitute these values: \[ \lambda = \frac{h}{\sqrt{2 (9 \times 10^{-31}) (4.0 \times 10^{-19})}} \] \[ = \frac{h}{\sqrt{72} \times 10^{-25}} \] Rewriting: \[ \lambda = \frac{h \times 10^{25}}{\sqrt{72}} \]
Final Answer: The correct choice is Option (2): \( \frac{h \times 10^{25}}{\sqrt{72}} \).
Match the LIST-I with LIST-II
LIST-I (Energy of a particle in a box of length L) | LIST-II (Degeneracy of the states) | ||
---|---|---|---|
A. | \( \frac{14h^2}{8mL^2} \) | I. | 1 |
B. | \( \frac{11h^2}{8mL^2} \) | II. | 3 |
C. | \( \frac{3h^2}{8mL^2} \) | III. | 6 |
Choose the correct answer from the options given below:
The mass of particle X is four times the mass of particle Y. The velocity of particle Y is four times the velocity of X. The ratio of de Broglie wavelengths of X and Y is: