Question:

The de Broglie wavelength of a particle of mass 1 mg moving with a velocity of \( 10 \) ms\(^{-1}\) is (h = \( 6.63 \times 10^{-34} \) Js)

Show Hint

The de Broglie wavelength is inversely proportional to mass and velocity. Higher mass or velocity leads to a smaller wavelength.
Updated On: Mar 19, 2025
  • \( 6.63 \times 10^{-29} \) m
  • \( 6.63 \times 10^{-31} \) m
  • \( 6.63 \times 10^{-34} \) m
  • \( 6.63 \times 10^{-22} \) m
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The de Broglie wavelength is given by: \[ \lambda = \frac{h}{m v} \] where: - \( h = 6.63 \times 10^{-34} \) Js (Planck’s constant) - \( m = 1 \) mg = \( 1 \times 10^{-6} \) kg - \( v = 10 \) m/s Substituting the values: \[ \lambda = \frac{6.63 \times 10^{-34}}{(1 \times 10^{-6}) \times (10)} \] \[ = \frac{6.63 \times 10^{-34}}{10^{-5}} \] \[ = 6.63 \times 10^{-29} \text{ m} \] Thus, the correct answer is \( 6.63 \times 10^{-29} \) m.
Was this answer helpful?
0
0

Top Questions on Quantum Mechanics

View More Questions