To solve the problem, we are given:
1. Formulas to Use:
- Curved Surface Area of a cylinder: $ \text{CSA} = 2\pi rh $
- Volume of a cylinder: $ V = \pi r^2 h $
2. Use CSA to Find Radius in Terms of Height:
From $2\pi rh = 264$
Divide both sides by $2\pi$:
$ rh = \frac{264}{2\pi} = \frac{132}{\pi} $ (Equation 1)
3. Use Volume Formula:
$ \pi r^2 h = 924 $
Substitute $rh$ from Equation 1:
Multiply both sides of Equation 1 by $r$:
$ r \cdot rh = r \cdot \frac{132}{\pi} \Rightarrow r^2 h = \frac{132r}{\pi} $
So:
$ \pi \cdot r^2 h = 132r = 924 $
Now solve for $r$:
$ 132r = 924 \Rightarrow r = \frac{924}{132} = 7 $
4. Substitute $r = 7$ in Equation 1 to Get Height:
$ rh = \frac{132}{\pi} \Rightarrow 7h = \frac{132}{\pi} $
$ h = \frac{132}{7\pi} $
Use $ \pi \approx 3.14 $:
$ h = \frac{132}{7 \times 3.14} = \frac{132}{21.98} \approx 6 $
Final Answer:
The height of the cylinder is $ {6 \, \text{m}} $.