Given:
\begin{itemize}
\item Inductance, \(L = 15 \, mH} = 15 \times 10^{-3} \, H}\)
\item Initial current, \(I_{initial}} = 0 \, A}\)
\item Final current, \(I_{final}} = 4 \, A}\)
\item Time, \(\Delta t = 0.004 \, s}\)
\end{itemize}
Formula:
The induced emf in an inductor is given by:
\[
emf} = -L \frac{\Delta I}{\Delta t}
\]
{Solution:}
1. Calculate the change in current (\(\Delta I\)):
\[
\Delta I = I_{final}} - I_{initial}} = 4 \, A} - 0 \, A} = 4 \, A}
\]
2. Substitute the values into the formula:
\[
emf} = -L \frac{\Delta I}{\Delta t}
\]
\[
emf} = -(15 \times 10^{-3} \, H}) \cdot \frac{4 \, A}}{0.004 \, s}}
\]
3. Simplify the calculation:
\[
emf} = -(15 \times 10^{-3}) \cdot 1000
\]
\[
emf} = -15 \, V}
\]
The negative sign indicates the direction of the induced emf, but we are only interested in the magnitude.
Final Answer:
\[
\boxed{15.0 \, V}}
\]