Concept:
Spin-only magnetic moment is given by:
\[
\mu = \sqrt{n(n+2)} \, \text{BM}
\]
where \(n\) = number of unpaired electrons.
Step 1: Analyze each complex.
- \([\ce{MnBr4}]^{2-}\): Mn(II), \(d^5\), weak field ligand (Br\(^-\)), high spin → 5 unpaired electrons.
\[
\mu = \sqrt{5(5+2)} = \sqrt{35} \approx 5.92 \,\text{BM}
\]
- \([\ce{Cu(H2O)6}]^{2+}\): Cu(II), \(d^9\), one unpaired electron.
\[
\mu = \sqrt{1(1+2)} = \sqrt{3} \approx 1.73 \,\text{BM}
\]
- \([\ce{Ni(CN)4}]^{2-}\): Ni(II), \(d^8\), strong field ligand (CN\(^-\)), low spin → no unpaired electrons.
\[
\mu = 0 \,\text{BM}
\]
- \([\ce{Ni(H2O)6}]^{2+}\): Ni(II), \(d^8\), weak field ligand (H\(_2\)O), high spin → 2 unpaired electrons.
\[
\mu = \sqrt{2(2+2)} = \sqrt{8} \approx 2.83 \,\text{BM}
\]
Step 2: Arrange in increasing order.
\[
[\ce{Ni(CN)4}]^{2-} (0)<[\ce{Cu(H2O)6}]^{2+} (1.73)<[\ce{Ni(H2O)6}]^{2+} (2.83)<[\ce{MnBr4}]^{2-} (5.92)
\]
\[
\text{Order: C<B<D<A}
\]