Concept:
Boiling point elevation depends on the colligative property:
\[
\Delta T_b = i \cdot K_b \cdot m
\]
where \(i\) = van’t Hoff factor (number of particles), \(m\) = molality.
Step 1: Calculate molality for each solution.
- \(\mathbf{I: Glucose}\) (non-electrolyte, \(i=1\))
\[
M(\ce{C6H12O6}) = 180 \,\text{g mol}^{-1}, \quad n = \frac{2.2}{180} \approx 0.0122 \,\text{mol}
\]
\[
m = \frac{0.0122}{0.125} \approx 0.0976 \,\text{mol L}^{-1}
\]
- \(\mathbf{II: CaCl2}\) (\(i=3\), dissociates into \(\ce{Ca^{2+}}\) + 2\(\ce{Cl^-}\))
\[
M(\ce{CaCl2}) = 40 + 71 = 111 \,\text{g mol}^{-1}, \quad n = \frac{1.9}{111} \approx 0.0171 \,\text{mol}
\]
\[
m = \frac{0.0171}{0.25} = 0.0684 \,\text{mol L}^{-1}
\]
Effective molality = \(i \cdot m = 3 \times 0.0684 = 0.205\).
- \(\mathbf{III: Urea}\) (non-electrolyte, \(i=1\))
\[
M(\ce{CH4N2O}) = 60 \,\text{g mol}^{-1}, \quad n = \frac{9}{60} = 0.15 \,\text{mol}
\]
\[
m = \frac{0.15}{0.5} = 0.30 \,\text{mol L}^{-1}
\]
- \(\mathbf{IV: Al2(SO4)3}\) (\(i=5\), dissociates into 2\(\ce{Al^{3+}}\) + 3\(\ce{SO4^{2-}}\))
\[
M(\ce{Al2(SO4)3}) = 2(27) + 3(32 + 64) = 342 \,\text{g mol}^{-1}
\]
\[
n = \frac{20.5}{342} \approx 0.0599 \,\text{mol}
\]
\[
m = \frac{0.0599}{0.75} \approx 0.0799 \,\text{mol L}^{-1}
\]
Effective molality = \(i \cdot m = 5 \times 0.0799 = 0.399\).
Step 2: Compare effective molalities.
\[
\text{I: } 0.0976, \quad \text{II: } 0.205, \quad \text{III: } 0.30, \quad \text{IV: } 0.399
\]
Step 3: Increasing order of boiling point.
\[
\text{III (0.30)<I (0.0976)<II (0.205)<IV (0.399)}
\]
Thus, the correct order is:
\[
\text{III<I<II<IV}
\]