The correct increasing order for bond angles among \( \text{BF}_3, \, \text{PF}_3, \, \text{and} \, \text{CF}_3 \) is:
\( \text{PF}_3 \, < \, \text{BF}_3 \, < \, \text{CF}_3 \)
\( \text{BF}_3 \, < \, \text{PF}_3 \, < \, \text{CF}_3 \)
\( \text{CF}_3 \, < \, \text{PF}_3 \, < \, \text{BF}_3 \)
\( \text{BF}_3 \, = \, \text{PF}_3 \, < \, \text{CF}_3 \)
To determine the increasing order of bond angles among \( \text{BF}_3, \, \text{PF}_3, \text{and} \, \text{CF}_3 \), we need to understand the molecular geometry and electronic effects influencing these compounds:
Based on these observations, we conclude:
Thus, the increasing order of bond angles is:
\(\text{CF}_3 \, < \, \text{PF}_3 \, < \, \text{BF}_3\)
BF$_3$: Planar structure with 120$^\circ$ bond angles ($sp^2$ hybridization).
PF$_3$: Tetrahedral geometry distorted by lone pair on phosphorus, bond angle $<$ 109.5$^\circ$.
CF$_3$: Tetrahedral geometry with strong electron-withdrawing fluorine atoms, bond angle $\sim$ 104$^\circ$.
The order of bond angles is CF$_3$ $<$ PF$_3$ $<$ BF$_3$.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: