The correct increasing order for bond angles among \( \text{BF}_3, \, \text{PF}_3, \, \text{and} \, \text{CF}_3 \) is:
\( \text{PF}_3 \, < \, \text{BF}_3 \, < \, \text{CF}_3 \)
\( \text{BF}_3 \, < \, \text{PF}_3 \, < \, \text{CF}_3 \)
\( \text{CF}_3 \, < \, \text{PF}_3 \, < \, \text{BF}_3 \)
\( \text{BF}_3 \, = \, \text{PF}_3 \, < \, \text{CF}_3 \)
To determine the increasing order of bond angles among \( \text{BF}_3, \, \text{PF}_3, \text{and} \, \text{CF}_3 \), we need to understand the molecular geometry and electronic effects influencing these compounds:
Based on these observations, we conclude:
Thus, the increasing order of bond angles is:
\(\text{CF}_3 \, < \, \text{PF}_3 \, < \, \text{BF}_3\)
BF$_3$: Planar structure with 120$^\circ$ bond angles ($sp^2$ hybridization).
PF$_3$: Tetrahedral geometry distorted by lone pair on phosphorus, bond angle $<$ 109.5$^\circ$.
CF$_3$: Tetrahedral geometry with strong electron-withdrawing fluorine atoms, bond angle $\sim$ 104$^\circ$.
The order of bond angles is CF$_3$ $<$ PF$_3$ $<$ BF$_3$.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 