

A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)): 
Biot-Savart’s law is an equation that gives the magnetic field produced due to a current-carrying segment. This segment is taken as a vector quantity known as the current element. In other words, Biot-Savart Law states that if a current carrying conductor of length dl produces a magnetic field dB, the force on another similar current-carrying conductor depends upon the size, orientation and length of the first current carrying element.
The equation of Biot-Savart law is given by,
\(dB = \frac{\mu_0}{4\pi} \frac{Idl sin \theta}{r^2}\)

For detailed derivation on Biot Savart Law, read more.