>
Exams
>
Mathematics
>
Binomial Expansion
>
the coefficient of x r in the expansion of frac 1
Question:
The coefficient of \( x^r \) in the expansion of \( \frac{1}{\sqrt{(1 - 2x)^3}} \) is
Show Hint
The binomial expansion of \( (1 - ax)^{-n} \) has the general term \( \frac{n(n+1)\cdots(n+r-1)}{r!} (ax)^r \).
AP EAPCET - 2023
AP EAPCET
Updated On:
May 12, 2025
\( \frac{2 \cdot 5 \cdot 8 \cdots (3r - 1)}{r!} (-1)^r \left(\frac{2}{3}\right)^r \)
\( \frac{2 \cdot 5 \cdot 8 \cdots (3r - 1)}{r!} (-1)^r \left(\frac{3}{2}\right)^r \)
\( \frac{2 \cdot 5 \cdot 8 \cdots (3r - 1)}{r!} \left(\frac{2}{3}\right)^r \)
\( \frac{2 \cdot 5 \cdot 8 \cdots (3r - 1)}{r!} \left(\frac{3}{2}\right)^r \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
We need to find the coefficient of \( x^r \) in the expansion of \( \frac{1}{\sqrt{(1 - 2x)^3}} = (1 - 2x)^{-3/2} \).
Using the binomial expansion for \( (1 + y)^n = 1 + ny + \frac{n(n - 1)}{2!} y^2 + \cdots + \frac{n(n - 1) \cdots (n - r + 1)}{r!} y^r + \cdots \), where \( y = -2x \) and \( n = -\frac{3}{2} \).
The coefficient of \( y^r \) is \( \frac{n(n - 1) \cdots (n - r + 1)}{r!} \).
Substituting \( n = -\frac{3}{2} \): $$ \frac{(-\frac{3}{2})(-\frac{3}{2} - 1) \cdots (-\frac{3}{2} - r + 1)}{r!} = \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3 + 2r - 2}{2})}{r!} $$ $$ = \frac{(-1)^r}{2^r} \frac{3 \cdot 5 \cdots (2r + 1)}{r!} $$ This does not directly match the form given in the options.
Let's rewrite the product in the numerator.
$$ 3 \cdot 5 \cdots (2r + 1) = \frac{1 \cdot 3 \cdot 5 \cdots (2r + 1) \cdot 2 \cdot 4 \cdots (2r)}{2 \cdot 4 \cdots (2r)} = \frac{(2r + 1)!}{2^r r!} $$ So the coefficient of \( y^r \) is \( \frac{(-1)^r}{2^r r!} \frac{(2r + 1)!}{2^r r!} \).
This is still not matching.
Let's try another approach.
$$ (1 - 2x)^{-3/2} = 1 + (-\frac{3}{2})(-2x) + \frac{(-\frac{3}{2})(-\frac{5}{2})}{2!} (-2x)^2 + \cdots + \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3}{2} - r + 1)}{r!} (-2x)^r + \cdots $$ The coefficient of \( x^r \) is \( \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{2r + 1}{2})}{r!} (-2)^r \) $$ = \frac{(-1)^r 3 \cdot 5 \cdots (2r + 1)}{2^r r!} (-1)^r 2^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} $$ This also does not match.
Let's look at the general term: $$ \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3}{2} - r + 1)}{r!} (-2x)^r = \frac{(-1)^r (3 \cdot 5 \cdots (2r + 1))}{2^r r!} (-1)^r 2^r x^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} x^r $$ Consider the form in the options: \( 2 \cdot 5 \cdot 8 \cdots (3r - 1) \).
This suggests a different expansion.
Let \( (1 - y)^{-n} = 1 + ny + \frac{n(n+1)}{2!} y^2 + \cdots + \frac{n(n+1) \cdots (n+r-1)}{r!} y^r + \cdots \) Here \( y = 2x \) and \( n = 3/2 \).
Coefficient of \( (2x)^r \) is \( \frac{\frac{3}{2}(\frac{5}{2}) \cdots (\frac{3}{2} + r - 1)}{r!} = \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} \) Coefficient of \( x^r \) is \( \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} 2^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} \) The options have terms like \( 3r - 1 \).
Consider \( (1 - 2x)^{-3/2} \).
Let \( -2x = y \).
\( (1 + y)^{-3/2} \) Coefficient of \( y^r \) is \( \frac{(-\frac{3}{2})(-\frac{1}{2}) \cdots (-\frac{3}{2} + r - 1)}{r!} (-1)^r \) - Incorrect formula.
Using \( (1 - y)^{-n} \), \( n = 3/2, y = 2x \).
Coefficient of \( (2x)^r \) is \( \frac{\frac{3}{2} \cdot \frac{5}{2} \cdots (\frac{3}{2} + r - 1)}{r!} = \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} \) Coefficient of \( x^r \) is \( \frac{3 \cdot 5 \cdots (2r + 1)}{r!} \) - Still not matching.
There seems to be a mismatch between my derivation and the options.
Let's assume there's a specific form intended.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Binomial Expansion
The number of integral terms in the expansion of
$ \left( 5^{\frac{1}{2}} + 7^{\frac{1}{8}} \right)^{1016} $ is:
JEE Main - 2025
Mathematics
Binomial Expansion
View Solution
The number of all five-letter words (with or without meaning) having at least one repeated letter that can be formed by using the letters of the word INCONVENIENCE is:
AP EAPCET - 2025
Mathematics
Binomial Expansion
View Solution
Let a random variable X have a binomial distribution with mean 8 and standard deviation 2. If
$P(X<2) = \frac{k}{216}, \text{ then the value of } k \text{ is } \_\_\_$.
AP PGECET - 2025
Computer Science & Information Technology
Binomial Expansion
View Solution
\[ \sum_{r=1}^{15} r^2 \left( \frac{{}^{15}C_r}{{}^{15}C_{r-1}} \right) =\ ? \]
AP EAPCET - 2025
Mathematics
Binomial Expansion
View Solution
The number of distinct quadratic equations $ax^2 + bx + c = 0$ with unequal real roots that can be formed by choosing the coefficients $a, b, c$ (with $a \ne 0$) from the set $\{0,1,2,4\}$ is
AP EAPCET - 2025
Mathematics
Binomial Expansion
View Solution
View More Questions
Questions Asked in AP EAPCET exam
The differential equation corresponding to the family of parabolas whose axis is along $x = 1$ is
Identify the correct option from the following:
AP EAPCET - 2025
Differential Equations
View Solution
If an electron in the excited state falls to ground state, a photon of energy 5 eV is emitted, then the wavelength of the photon is nearly
AP EAPCET - 2025
Nuclear physics
View Solution
The number of ways of dividing 15 persons into 3 groups containing 3, 5 and 7 persons so that two particular persons are not included into the 5 persons group is
AP EAPCET - 2025
Binomial theorem
View Solution
The domain and range of a real valued function \( f(x) = \cos (x-3) \) are respectively.
AP EAPCET - 2025
Functions
View Solution
If the line $$ 4x - 3y + 7 = 0 $$ touches the circle $$ x^2 + y^2 - 6x + 4y - 12 = 0 $$ at $ (\alpha, \beta) $, then find $ \alpha + 2\beta $.
AP EAPCET - 2025
Circle
View Solution
View More Questions