We need to find the coefficient of \( x^r \) in the expansion of \( \frac{1}{\sqrt{(1 - 2x)^3}} = (1 - 2x)^{-3/2} \).
Using the binomial expansion for \( (1 + y)^n = 1 + ny + \frac{n(n - 1)}{2!} y^2 + \cdots + \frac{n(n - 1) \cdots (n - r + 1)}{r!} y^r + \cdots \), where \( y = -2x \) and \( n = -\frac{3}{2} \).
The coefficient of \( y^r \) is \( \frac{n(n - 1) \cdots (n - r + 1)}{r!} \).
Substituting \( n = -\frac{3}{2} \):
$$ \frac{(-\frac{3}{2})(-\frac{3}{2} - 1) \cdots (-\frac{3}{2} - r + 1)}{r!} = \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3 + 2r - 2}{2})}{r!} $$
$$ = \frac{(-1)^r}{2^r} \frac{3 \cdot 5 \cdots (2r + 1)}{r!} $$
This does not directly match the form given in the options.
Let's rewrite the product in the numerator.
$$ 3 \cdot 5 \cdots (2r + 1) = \frac{1 \cdot 3 \cdot 5 \cdots (2r + 1) \cdot 2 \cdot 4 \cdots (2r)}{2 \cdot 4 \cdots (2r)} = \frac{(2r + 1)!}{2^r r!} $$
So the coefficient of \( y^r \) is \( \frac{(-1)^r}{2^r r!} \frac{(2r + 1)!}{2^r r!} \).
This is still not matching.
Let's try another approach.
$$ (1 - 2x)^{-3/2} = 1 + (-\frac{3}{2})(-2x) + \frac{(-\frac{3}{2})(-\frac{5}{2})}{2!} (-2x)^2 + \cdots + \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3}{2} - r + 1)}{r!} (-2x)^r + \cdots $$
The coefficient of \( x^r \) is \( \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{2r + 1}{2})}{r!} (-2)^r \)
$$ = \frac{(-1)^r 3 \cdot 5 \cdots (2r + 1)}{2^r r!} (-1)^r 2^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} $$
This also does not match.
Let's look at the general term:
$$ \frac{(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{3}{2} - r + 1)}{r!} (-2x)^r = \frac{(-1)^r (3 \cdot 5 \cdots (2r + 1))}{2^r r!} (-1)^r 2^r x^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} x^r $$
Consider the form in the options: \( 2 \cdot 5 \cdot 8 \cdots (3r - 1) \).
This suggests a different expansion.
Let \( (1 - y)^{-n} = 1 + ny + \frac{n(n+1)}{2!} y^2 + \cdots + \frac{n(n+1) \cdots (n+r-1)}{r!} y^r + \cdots \)
Here \( y = 2x \) and \( n = 3/2 \).
Coefficient of \( (2x)^r \) is \( \frac{\frac{3}{2}(\frac{5}{2}) \cdots (\frac{3}{2} + r - 1)}{r!} = \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} \)
Coefficient of \( x^r \) is \( \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} 2^r = \frac{3 \cdot 5 \cdots (2r + 1)}{r!} \)
The options have terms like \( 3r - 1 \).
Consider \( (1 - 2x)^{-3/2} \).
Let \( -2x = y \).
\( (1 + y)^{-3/2} \)
Coefficient of \( y^r \) is \( \frac{(-\frac{3}{2})(-\frac{1}{2}) \cdots (-\frac{3}{2} + r - 1)}{r!} (-1)^r \) - Incorrect formula.
Using \( (1 - y)^{-n} \), \( n = 3/2, y = 2x \).
Coefficient of \( (2x)^r \) is \( \frac{\frac{3}{2} \cdot \frac{5}{2} \cdots (\frac{3}{2} + r - 1)}{r!} = \frac{3 \cdot 5 \cdots (2r + 1)}{2^r r!} \)
Coefficient of \( x^r \) is \( \frac{3 \cdot 5 \cdots (2r + 1)}{r!} \) - Still not matching.
There seems to be a mismatch between my derivation and the options.
Let's assume there's a specific form intended.