\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Consider the following reaction sequence.

One mole each of \(A_2(g)\) and \(B_2(g)\) are taken in a 1 L closed flask and allowed to establish the equilibrium at 500 K: \(A_{2}(g)+B_{2}(g) \rightleftharpoons 2AB(g)\). The value of x (missing enthalpy of \(B_2\) or related parameter) is ______ . (Nearest integer)}