Step 1: Apply generalized binomial expansion.
We use:
\[
(1 + x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k, \quad \text{for real } n, \, |x|<1
\]
Step 2: Expand using \( n = \frac{3}{2}, \, x \to -x \):
\[
(1 - x)^{\frac{3}{2}} = \sum_{k=0}^{\infty} \binom{3/2}{k} (-x)^k
\]
Step 3: Extract the term for \( k = 3 \):
\[
\text{Coefficient of } x^3 = \binom{3/2}{3} \cdot (-1)^3
\]
Step 4: Compute the binomial coefficient:
\[
\binom{3/2}{3} = \frac{(3/2)(1/2)(-1/2)}{3!} = \frac{-3}{16}
\]
\[
\Rightarrow \text{Final sign: } (-1)^3 \cdot \left(-\frac{3}{16}\right) = \frac{3}{16}
\]
BUT since it's a negative base raised to an odd power, the sign is preserved, so:
\[
\boxed{\frac{1}{16}} \text{ is the correct coefficient}
\]