We are given:
- The coefficient of volume expansion of glycerine: \( \beta = 49 \times 10^{-5} \, \text{K}^{-1} \),
- Temperature rise: \( \Delta T = 50^\circ \text{C} \).
The volume expansion coefficient \( \beta \) is defined as the fractional change in volume per unit temperature change:
\[
\frac{\Delta V}{V} = \beta \Delta T
\]
This is the change in volume per unit volume. Since density \( \rho \) is inversely proportional to volume, the fractional change in density is:
\[
\frac{\Delta \rho}{\rho} = - \beta \Delta T
\]
Thus, the percentage change in density is:
\[
% \, \Delta \rho = - \beta \Delta T \times 100
\]
Substitute the given values:
\[
% \, \Delta \rho = - (49 \times 10^{-5}) \times 50 \times 100
\]
\[
% \, \Delta \rho = - 2.45
\]
Thus, the percentage change in density is \( 2.45% \).