We are given the frequency distribution:
\includegraphics[]{34.png}
To calculate the coefficient of variation (CV), we use the formula:
\[
CV = \frac{\sigma}{\mu} \times 100,
\]
where \( \sigma \) is the standard deviation and \( \mu \) is the mean.
1. First, calculate the mean \( \mu \):
\[
\mu = \frac{\sum f_i x_i}{\sum f_i} = \frac{1(4) + 3(3) + 5(1)}{1 + 3 + 5} = \frac{4 + 9 + 5}{9} = \frac{18}{9} = 2.
\]
2. Next, calculate the variance \( \sigma^2 \):
\[
\sigma^2 = \frac{\sum f_i x_i^2}{\sum f_i} - \mu^2 = \frac{1(4^2) + 3(3^2) + 5(1^2)}{9} - 2^2 = \frac{16 + 27 + 5}{9} - 4 = \frac{48}{9} - 4 = \frac{48}{9} - \frac{36}{9} = \frac{12}{9} = \frac{4}{3}.
\]
Thus, \( \sigma = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}} \).
3. Now, calculate the coefficient of variation:
\[
CV = \frac{\sigma}{\mu} \times 100 = \frac{\frac{2}{\sqrt{3}}}{2} \times 100 = \frac{1}{\sqrt{3}} \times 100 = \frac{100}{\sqrt{3}}.
\]
Thus, the correct answer is \( \frac{100}{\sqrt{3}} \).