The characteristic polynomial of a \(3 \times 3\) matrix \( A \) is
\[
|A - \lambda I| = \lambda^3 - 9\lambda^2 + 23\lambda - 15.
\]
Let \( X = \text{trace}(A) \) and \( Y = \det(A) \), then:
Show Hint
In a characteristic polynomial of a \(3 \times 3\) matrix, the coefficient of \(\lambda^2\) gives the negative of the trace, and the constant term gives the determinant.
For a \(3 \times 3\) matrix \(A\), the characteristic polynomial is generally given by:
\[
|A - \lambda I| = \lambda^3 - (\text{trace } A)\lambda^2 + (\text{sum of principal minors})\lambda - \det(A).
\]
Comparing the given polynomial:
\[
\lambda^3 - 9\lambda^2 + 23\lambda - 15
\]
with the general form, we get:
- Trace \(X = \text{trace}(A) = 9\)
- Determinant \(Y = \det(A) = 15\)
So,
\[
\dfrac{X}{Y} = \dfrac{9}{15}
\]