1. Let the events be: - \( P_1, P_2, P_3 \): Selection of \( P, Q, \) and \( R \) as CEO. - \( E \): Company increases profits.
2. Use Bayes' theorem: The required probability is: \[ P(P_3 \,|\, E) = \frac{P(P_3) \cdot P(E \,|\, P_3)}{P(E)}. \]
3. Calculate the prior probabilities: From the given ratio \( 4 : 1 : 2 \): \[ P(P_1) = \frac{4}{7}, \quad P(P_2) = \frac{1}{7}, \quad P(P_3) = \frac{2}{7}. \]
4. Calculate the total probability \( P(E) \): \[ P(E) = P(P_1) \cdot P(E \,|\, P_1) + P(P_2) \cdot P(E \,|\, P_2) + P(P_3) \cdot P(E \,|\, P_3). \] Substitute the given probabilities: \[ P(E) = \frac{4}{7} \cdot 0.3 + \frac{1}{7} \cdot 0.8 + \frac{2}{7} \cdot 0.5. \] Simplify: \[ P(E) = \frac{1.2}{7} + \frac{0.8}{7} + \frac{1.0}{7} = \frac{3.0}{7}. \]
5. Calculate \( P(P_3 \,|\, E) \): \[ P(P_3 \,|\, E) = \frac{P(P_3) \cdot P(E \,|\, P_3)}{P(E)}. \] Substitute: \[ P(P_3 \,|\, E) = \frac{\frac{2}{7} \cdot 0.5}{\frac{3.0}{7}} = \frac{1.0}{3.0} = \frac{1}{3}. \]
Final Answer: The probability that the increase in profits is due to \( R \)'s appointment as CEO is \( \boxed{\frac{1}{3}} \).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
परसेवा का आनंद — 120 शब्दों में रचनात्मक लेख लिखिए: