1. Let the events be:
- \( P_1, P_2, P_3 \): Selection of \( P, Q, \) and \( R \) as CEO.
- \( E \): Company increases profits.
2. Use Bayes' theorem:
The required probability is:
\[
P(P_3 \,|\, E) = \frac{P(P_3) \cdot P(E \,|\, P_3)}{P(E)}.
\]
3. Calculate the prior probabilities:
From the given ratio \( 4 : 1 : 2 \):
\[
P(P_1) = \frac{4}{7}, \quad P(P_2) = \frac{1}{7}, \quad P(P_3) = \frac{2}{7}.
\]
4. Calculate the total probability \( P(E) \):
\[
P(E) = P(P_1) \cdot P(E \,|\, P_1) + P(P_2) \cdot P(E \,|\, P_2) + P(P_3) \cdot P(E \,|\, P_3).
\]
Substitute the given probabilities:
\[
P(E) = \frac{4}{7} \cdot 0.3 + \frac{1}{7} \cdot 0.8 + \frac{2}{7} \cdot 0.5.
\]
Simplify:
\[
P(E) = \frac{1.2}{7} + \frac{0.8}{7} + \frac{1.0}{7} = \frac{3.0}{7}.
\]
5. Calculate \( P(P_3 \,|\, E) \):
\[
P(P_3 \,|\, E) = \frac{P(P_3) \cdot P(E \,|\, P_3)}{P(E)}.
\]
Substitute:
\[
P(P_3 \,|\, E) = \frac{\frac{2}{7} \cdot 0.5}{\frac{3.0}{7}} = \frac{1.0}{3.0} = \frac{1}{3}.
\]
Final Answer:
The probability that the increase in profits is due to \( R \)'s appointment as CEO is \( \boxed{\frac{1}{3}} \).