Step 1: Define symbols and basic relations.
Let \\(M_s\\) = mass of dry solids, \\(M_w\\) = mass of pore water, \\(V\\) = total volume of the specimen (assumed unchanged between bulk and dry states).
\\[
\\text{Bulk density: }\\; \\rho_b = \\frac{M_s + M_w}{V}, \\qquad
\\text{Dry density: }\\; \\rho_d = \\frac{M_s}{V}.
\\]
Water content (gravimetric): \\(w = \\dfrac{M_w}{M_s} = 18\\% = 0.18 \\; \\Rightarrow \\; M_w = 0.18 M_s\\).
Step 2: Express \\(\\rho_b\\) in terms of \\(\\rho_d\\) and \\(w\\).
\\[
\\rho_b = \\frac{M_s + M_w}{V} = \\frac{M_s(1+w)}{V} = (1+w) \\frac{M_s}{V} = (1+w) \\rho_d.
\\]
Hence the fundamental conversion:
\\[
\\boxed{\\rho_d = \\frac{\\rho_b}{1+w}}
\\]
Step 3: Substitute numerical values with units.
\\[
\\rho_d = \\frac{1800\\; \\text{kg m}^{-3}}{1+0.18}
= \\frac{1800}{1.18}\\; \\text{kg m}^{-3}
= 1525.4237\\ldots\\; \\text{kg m}^{-3}.
\\]
Step 4: Rounding and reasonableness check.
– Rounding to 2 decimals: \\(1525.42\\; \\text{kg m}^{-3}\\).
– Sanity: since \\(w>0\\), \\(\\rho_d < \\rho_b\\). Indeed, \\(1525.42 < 1800\\) ✓.
– Extreme checks: if \\(w \\to 0 \\; \\Rightarrow \\; \\rho_d \\to \\rho_b\\) (consistent);
if \\(w \\to 100\\% \\; \\Rightarrow \\; \\rho_d = \\rho_b / 2\\) (trend consistent).
Final Answer: \\(\\boxed{1525.42\\; \\text{kg m}^{-3}}\\)
A hillslope is shown below. If the area over the failure plane is 50 m\(^2\) and the weight of the hillslope material (W) is 2000 tons, the Factor of Safety (FOS) for this hillslope in dry conditions is
Cohesion along failure plane = 196 kPa, Dip of failure plane = 60°, Internal friction angle = 30°, Area over failure plane = 50 m\(^2\), Weight of hillslope material = 2000 tons (Round off to two decimal places)