Step 1: Define symbols and basic relations.
Let \\(M_s\\) = mass of dry solids, \\(M_w\\) = mass of pore water, \\(V\\) = total volume of the specimen (assumed unchanged between bulk and dry states).
\\[
\\text{Bulk density: }\\; \\rho_b = \\frac{M_s + M_w}{V}, \\qquad
\\text{Dry density: }\\; \\rho_d = \\frac{M_s}{V}.
\\]
Water content (gravimetric): \\(w = \\dfrac{M_w}{M_s} = 18\\% = 0.18 \\; \\Rightarrow \\; M_w = 0.18 M_s\\).
Step 2: Express \\(\\rho_b\\) in terms of \\(\\rho_d\\) and \\(w\\).
\\[
\\rho_b = \\frac{M_s + M_w}{V} = \\frac{M_s(1+w)}{V} = (1+w) \\frac{M_s}{V} = (1+w) \\rho_d.
\\]
Hence the fundamental conversion:
\\[
\\boxed{\\rho_d = \\frac{\\rho_b}{1+w}}
\\]
Step 3: Substitute numerical values with units.
\\[
\\rho_d = \\frac{1800\\; \\text{kg m}^{-3}}{1+0.18}
= \\frac{1800}{1.18}\\; \\text{kg m}^{-3}
= 1525.4237\\ldots\\; \\text{kg m}^{-3}.
\\]
Step 4: Rounding and reasonableness check.
– Rounding to 2 decimals: \\(1525.42\\; \\text{kg m}^{-3}\\).
– Sanity: since \\(w>0\\), \\(\\rho_d < \\rho_b\\). Indeed, \\(1525.42 < 1800\\) ✓.
– Extreme checks: if \\(w \\to 0 \\; \\Rightarrow \\; \\rho_d \\to \\rho_b\\) (consistent);
if \\(w \\to 100\\% \\; \\Rightarrow \\; \\rho_d = \\rho_b / 2\\) (trend consistent).
Final Answer: \\(\\boxed{1525.42\\; \\text{kg m}^{-3}}\\)
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?