Question:

The B-B bond order in $B_2$ is ______.

Updated On: Nov 25, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 1

Solution and Explanation

To determine the bond order of $B_2$, we must analyze its molecular orbital (MO) configuration. Boron ($B$) has an atomic number of 5, thus $B_2$ comprises 10 electrons in total (5 per atom). We follow the standard electron filling order in molecular orbitals for diatomic molecules from the $2^{nd}$ period, particularly those with less than 14 electrons. The sequence is: σ(1s)2, σ*(1s)2, σ(2s)2, σ*(2s)2, π(2px,y)2, σ(2p)0. Here, the $π(2p)$ orbitals are filled before the $σ(2p)$ due to being lower in energy. For $B_2$, we fill up to π(2px,y) orbitals with 2 electrons:

  • σ(1s)2
  • σ*(1s)2
  • σ(2s)2
  • σ*(2s)2
  • π(2px)1, π(2py)1

Next, we calculate the bond order using the formula: $\text{Bond Order} = \frac{1}{2}(\text{number of bonding electrons} - \text{number of antibonding electrons})$. In this case:

Bonding electrons: (σ(1s)2, σ(2s)2, π(2px)1, π(2py)1) = 6

Antibonding electrons: (σ*(1s)2, σ*(2s)2) = 4

Thus, bond order = $\frac{1}{2}(6 - 4) = \frac{1}{2}(2) = 1$.

The bond order of $B_2$ is 1

Was this answer helpful?
0
0