A continuous time periodic signal \( x(t) \) is given by: \[ x(t) = 1 + 2\cos(2\pi t) + 2\cos(4\pi t) + 2\cos(6\pi t) \] If \( T \) is the period of \( x(t) \), then evaluate: \[ \frac{1}{T} \int_0^T |x(t)|^2 \, dt \quad {(round off to the nearest integer).} \]
The Nyquist plot of a strictly stable \( G(s) \), having the numerator polynomial as \( (s - 3) \), encircles the critical point \(-1\) once in the anti-clockwise direction. Which one of the following statements on the closed-loop system shown in the figure is correct?

The open-loop transfer function of the system shown in the figure is: \[ G(s) = \frac{K s (s + 2)}{(s + 5)(s + 7)} \] For \( K \geq 0 \), which of the following real axis point(s) is/are on the root locus?
