Step 1: Understanding the Problem
We are given:
Atomic mass of \( ^{13}_6\text{C} = 13.003354 \, \text{u} \)
Atomic mass of \( ^{12}_6\text{C} = 12.000000 \, \text{u} \)
Mass of neutron \( = 1.008665 \, \text{u} \)
We are to find the energy required to remove one neutron from \( ^{13}\text{C} \).
Step 2: Write the Reaction
The process of removing a neutron is represented as: \[ ^{13}_6\text{C} \rightarrow {}^{12}_6\text{C} + n \]
Step 3: Calculate Mass Defect
\[ \Delta m = \left( \text{mass of } ^{12}\text{C} + \text{mass of neutron} \right) - \text{mass of } ^{13}\text{C} \] \[ \Delta m = (12.000000 + 1.008665) - 13.003354 = 13.008665 - 13.003354 = 0.005311 \, \text{u} \]
Step 4: Convert Mass Defect to Energy
We use the relation: \[ E = \Delta m \times 931.5 \, \text{MeV/u} \] \[ E = 0.005311 \times 931.5 = 4.946 \, \text{MeV} \approx 4.95 \, \text{MeV} \]
Final Answer:
\[ \boxed{4.95 \, \text{MeV}} \] Hence, the correct option is:
Option 3: 4.95 MeV
Identify the logic gate given in the circuit: