We are told:
\[ \frac{x + y + z}{3} = 80 \Rightarrow x + y + z = 240 \tag{1} \]
It is also given:
\[ \frac{x + y + z + u + v}{5} = 75 \Rightarrow x + y + z + u + v = 375 \tag{2} \]
\[ u + v = 375 - 240 = 135 \tag{3} \]
It is given that:
\[ \frac{x + y}{2} + \frac{y + z}{2} = 135 \]
Simplify the left-hand side:
\[ \frac{x + y + y + z}{2} = \frac{x + 2y + z}{2} \Rightarrow \frac{x + 2y + z}{2} = 135 \Rightarrow x + 2y + z = 270 \tag{4} \]
From equation (1): \( x + y + z = 240 \)
\[ x + 2y + z - (x + y + z) = 270 - 240 \Rightarrow y = 30 \]
\[ x + y + z = 240 \quad \text{and} \quad y = 30 \Rightarrow x + z = 240 - 30 = 210 \]
Since \( x + z = 210 \), and \( x \geq z \), the minimum value of \( x \) occurs when \( x = z \). So:
\[ x = z = \frac{210}{2} = 105 \]
\[ \boxed{x = 105} \]