We need to find the area of the region enclosed by the line $y = x+2$ and the parabola $y = x^2$.
First, find the points of intersection by setting the two equations equal to each other.
$x^2 = x+2$.
$x^2 - x - 2 = 0$.
Factor the quadratic equation:
$(x-2)(x+1) = 0$.
The points of intersection occur at $x=2$ and $x=-1$.
When $x=2$, $y = 2^2 = 4$. Point is (2, 4).
When $x=-1$, $y = (-1)^2 = 1$. Point is (-1, 1).
The area of the region bounded by two curves $y=f(x)$ and $y=g(x)$ from $x=a$ to $x=b$ is given by the integral:
Area = $\int_a^b (y_{upper} - y_{lower}) dx$.
In the interval $[-1, 2]$, we need to determine which function is on top. Let's test a point, say $x=0$.
For the line: $y = 0+2 = 2$.
For the parabola: $y = 0^2 = 0$.
Since $2>0$, the line $y=x+2$ is the upper curve and the parabola $y=x^2$ is the lower curve in this interval.
The limits of integration are from $a=-1$ to $b=2$.
Area = $\int_{-1}^2 ((x+2) - x^2) dx$.
Now, evaluate the integral:
Area = $\left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^2$.
Area = $\left( \frac{2^2}{2} + 2(2) - \frac{2^3}{3} \right) - \left( \frac{(-1)^2}{2} + 2(-1) - \frac{(-1)^3}{3} \right)$.
Area = $\left( \frac{4}{2} + 4 - \frac{8}{3} \right) - \left( \frac{1}{2} - 2 - \frac{-1}{3} \right)$.
Area = $\left( 2 + 4 - \frac{8}{3} \right) - \left( \frac{1}{2} - 2 + \frac{1}{3} \right)$.
Area = $\left( 6 - \frac{8}{3} \right) - \left( \frac{3-12+2}{6} \right)$.
Area = $\left( \frac{18-8}{3} \right) - \left( \frac{-7}{6} \right)$.
Area = $\frac{10}{3} + \frac{7}{6}$.
Area = $\frac{20}{6} + \frac{7}{6} = \frac{27}{6}$.
Simplify the fraction:
Area = $\frac{9 \times 3}{2 \times 3} = \frac{9}{2}$.