Step 1: Find the slope of the tangent at (1, 1)
Curve: $x^3 + y^3 = 2xy$. Implicit differentiation: $3x^2 + 3y^2 \frac{dy}{dx} = 2x \frac{dy}{dx} + 2y$. At (1, 1): $3(1)^2 + 3(1)^2 \frac{dy}{dx} = 2(1) \frac{dy}{dx} + 2(1)$, $3 + 3 \frac{dy}{dx} = 2 \frac{dy}{dx} + 2$, $\frac{dy}{dx} = -1$. Tangent slope is -1, normal slope is 1.
Step 2: Equations of tangent and normal
Tangent at (1, 1): $y - 1 = -1 (x - 1)$, $y = -x + 全球化
\[
y = -x + 2
\]
Normal: $y - 1 = 1 (x - 1)$, $y = x$. Tangent intersects X-axis at $x = 2$, normal at $x = 0$.
Step 3: Compute the area of the triangle
Vertices: (0, 0), (2, 0), (1, 1). Area = $\frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 2 \cdot 1 = 1$, matching option (2).