Step 1: Find the intersection points of $x^2 + y^2 = 36$ and $y^2 = 9x$.
$x^2 + 9x - 36 = 0 \Rightarrow (x+12)(x-3) = 0$. Since $y^2 \geq 0$, we take $x=3$.
At $x=3$, $y^2 = 27 \Rightarrow y = \pm 3\sqrt{3}$.
Step 2: Area inside the parabola and circle is $A_{in} = 2 \left[ \int_0^3 \sqrt{9x} \, dx + \int_3^6 \sqrt{36-x^2} \, dx \right]$.
Step 3: Solving the integrals: $A_{in} = 12\pi - 3\sqrt{3}$.
Step 4: Area outside the parabola is Total Area - Area inside:
$Area = 36\pi - (12\pi - 3\sqrt{3}) = 24\pi + 3\sqrt{3}$.